A novel, privacy-preserving cryptographic approach for sharing sequencing data

نویسندگان

  • Christopher A. Cassa
  • Rachel A. Miller
  • Kenneth D. Mandl
چکیده

OBJECTIVE DNA samples are often processed and sequenced in facilities external to the point of collection. These samples are routinely labeled with patient identifiers or pseudonyms, allowing for potential linkage to identity and private clinical information if intercepted during transmission. We present a cryptographic scheme to securely transmit externally generated sequence data which does not require any patient identifiers, public key infrastructure, or the transmission of passwords. MATERIALS AND METHODS This novel encryption scheme cryptographically protects participant sequence data using a shared secret key that is derived from a unique subset of an individual's genetic sequence. This scheme requires access to a subset of an individual's genetic sequence to acquire full access to the transmitted sequence data, which helps to prevent sample mismatch. RESULTS We validate that the proposed encryption scheme is robust to sequencing errors, population uniqueness, and sibling disambiguation, and provides sufficient cryptographic key space. DISCUSSION Access to a set of an individual's genotypes and a mutually agreed cryptographic seed is needed to unlock the full sequence, which provides additional sample authentication and authorization security. We present modest fixed and marginal costs to implement this transmission architecture. CONCLUSIONS It is possible for genomics researchers who sequence participant samples externally to protect the transmission of sequence data using unique features of an individual's genetic sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy-Preserving Distributed Data Mining Techniques: A Survey

In various distributed data mining settings, leakage of the real data is not adequate because of privacy issues. To overcome this problem, numerous privacy-preserving distributed data mining practices have been suggested such as protect privacy of their data by perturbing it with a randomization algorithm and using cryptographic techniques. In this paper, we review and provide extensive survey ...

متن کامل

A centralized privacy-preserving framework for online social networks

There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...

متن کامل

Preserving Privacy and Sharing the Data in Distributed Environment using Cryptographic Technique on Perturbed data

The main objective of data mining is to extract previously unknown patterns from large collection of data. With the rapid growth in hardware, software and networking technology there is outstanding growth in the amount data collection. Organizations collect huge volumes of data from heterogeneous databases which also contain sensitive and private information about and individual .The data minin...

متن کامل

A Knowledge Model Sharing Based Approach to Privacy-Preserving Data Mining

Privacy-preserving data mining (PPDM) is an important problem and is currently studied in three approaches: the cryptographic approach, the data publishing, and the model publishing. However, each of these approaches has some problems. The cryptographic approach does not protect privacy of learned knowledge models and may have performance and scalability issues. The data publishing, although is...

متن کامل

Effective Incentive Compatible Model for Privacy Preservation of Information in Secure Data Sharing and Publishing

Privacy preserving is one of the most important research topics in the data security field and it has become a serious concern in the secure transformation of personal data in recent years. For example, different credit card companies and disease control centers may try to build better data sharing or publishing models for privacy protection through privacy preserving data mining techniques (PP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Medical Informatics Association : JAMIA

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2013